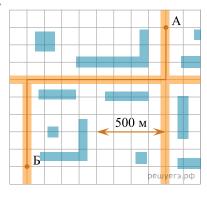
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Абитуриент провел поиск информации в сети Интернет о наиболее высоких зданиях в мире. Результаты поиска представлены в таблице.

№	Название здания	Высота
1	Небесное дерево Токио	6,34 · 10 ⁴ см
2	Си-Эн Тауэр	553 м
3	Телебашня Гуанчжоу	610 м
4	Бурдж-Халифа	0,828 км
5	Останкинская башня	$5,40 \cdot 10^{5}$ mm

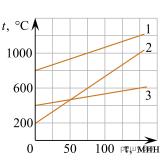
Самое высокое здание указано в строке таблицы, номер которой:


1) 1 2) 2 3) 3 4) 4 5) 5

2. Во время испытания автомобиля водитель держал постоянную скорость, модуль которой указывает стрелка спидометра, изображённого на рисунке. За промежуток времени $\Delta t = 15$ мин автомобиль проехал путь s, равный:

3. Если средняя путевая скорость движения автомобиля из пункта A в пункт B $\langle \upsilon \rangle = 16,0$ км/ч (см.рис.), то автомобиль находился в пути в течение промежутка времени Δt равного:

Примечание: масштаб указан на карте.

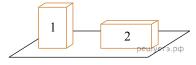


1) 150 c 2) 200 c 3) 300 c 4) 400 c 5) 450 c

- 4. Выберите процессы, в которых сила давления идеального газа совершает положительную работу:
 - 1) изобарное сжатие газа; 2) изобарное нагревание газа; 3) изохорное нагревание газа; 4) изохорное охлаждение газа; 5) изотермическое расширение газа.

5.

На рисунке изображён график зависимости температуры t от времени τ для трёх тел (1, 2 и 3) одинаковой массы, помещённых в печь. Если каждому из тел ежесекундно сообщалось одно и то же количество теплоты, то для удельных теплоёмкостей веществ c_1, c_2 и c_3 этих тел выполняется соотношение:



1) $c_1 < c_2 < c_3$ 2) $c_1 < c_2 = c_3$ 3) $c_3 < c_1 < c_2$

4) $c_2 < c_1 < c_3$

5) $c_3 < c_2 < c_1$

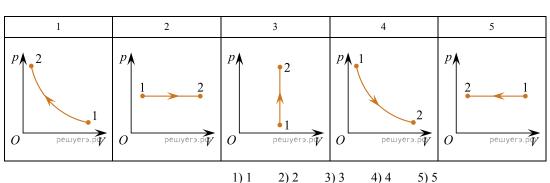
6. На рисунке изображён брусок, находящийся на горизонтальной поверхности, в двух различных положениях (1 и 2). Выберите вариант ответа с правильным соотношением модулей сил F_1 и F_2 давления бруска на горизонтальную поверхность и давлений p_1 и p_2 бруска на эту же поверхность:

1) $F_1 = F_2, p_1 > p_2$; 2) $F_1 = F_2, p_1 = p_2$; 3) $F_1 = F_2, p_1 < p_2$; 4) $F_1 > F_2, p_1 = p_2$;

5) $F_1 < F_2, p_1 = p_2$.

7. Вещество, начальная температура которого T_1 = 1400 K, охладили на $|\Delta t|$ = 500 °C. Конечная температура t_2 вещества равна:

1) 354 °C


2) 627 °C

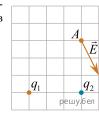
3) 900 °C

4) 1173 °C

5) 1446 °C

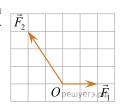
8. На рисунке представлен график зависимости давления идеального газа определенной массы от абсолютной температуры. График этого процесса в координатах (р, V) представлен на рисунке, обозначенном цифрой:

9. В некотором процессе над термодинамической системой внешние силы совершили работу $A = 10 \; \text{Дж}$, при этом внутренняя энергия системы увеличилась на $\Delta U = 25$ Дж. Количество теплоты Q, полученное системой, равно:

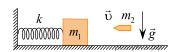

- 1)0
- 2) 10 Дж
- 3) 15 Дж
- 4) 25 Дж
- 5) 35 Дж

10. Единицей электрического сопротивления в СИ, является:

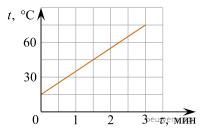
- 1) 1 Φ
- 2) 1 Γ_H
- 3) 1 Тл
- 4) 1 O_M

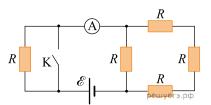

5) 1 B

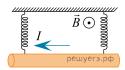
11. Если в точке А модуль результирующей напряжённости электростатического поля, созданного точечными зарядами q_1 и q_2 , E=50 В/см, то модуль напряжённости E_2 электростатического поля, создаваемого в точке A (см. рис.) зарядом q_2 , равен ... B/см.



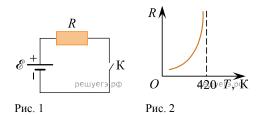
Ответ запишите в вольтах на сантиметр, округлив до целых.


12. На покоящуюся материальную точку O начинают действовать две силы $\vec{F_1}$ и $\vec{F_2}$ (см.рис.), причём модуль первой силы F_1 = 4 H. Материальная точка останется в состоянии покоя, если к ней приложить третью силу, модуль которой F_3 равен ... **H**.

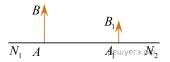

- 13. Трактор, коэффициент полезного действия которого $\eta = 25$ %, при вспашке горизонтального участка поля равномерно движется со скоростью, модуль которой $\upsilon = 5,4$ км/ч. Если модуль силы тяги трактора F = 10 кH, то топливо массой m = 8,1 кг (q = 40 МДж/кг) было израсходовано за промежуток времени Δt , равный ... **мин**.
- **14.** В брусок массы $m_1=2,0$ кг, лежавший на гладкой горизонтальной поверхности и прикрепленный к вертикальному упору легкой пружиной, попадает и застревает в нем пуля массы $m_2=0,01$ кг, летевшая со скоростью, модуль которой $\upsilon=60$ м/с, направленной вдоль оси пружины (см. рис.). Если максимальное значение силы, которой пружина действует на упор в процессе возникших колебаний, $F_{\rm max}=15,5$ H, то жесткость k пружины равна ... кH/м. Ответ округлите до целого


- **15.** Идеальный одноатомный газ, начальный объем которого $V_1 = 0.8 \text{ m}^3$, а количество вещества остается постоянным, находится под давлением $p_1 = 1.0 \cdot 10^5$ Па. Газ нагревают сначала изобарно до объема $V_2 = 4.0 \text{ m}^3$, а затем продолжают нагревать при постоянном объеме. Если конечное давление газа $p_2 = 3.0 \cdot 10^5$ Па, то количество теплоты, полученное им при переходе из начального состояния в конечное равно ... **МДж**.
- **16.** На рисунке приведён график зависимости температуры t тела ($c=1000~\rm{Дж/(kr\cdot ^{\circ}C)}$) от времени τ . Если к телу ежесекундно подводилось количество теплоты $|Q_0|=7,0~\rm{Дж}$, то масса m тела равна ... Γ .

- 17. Цилиндрический сосуд с идеальным одноатомным газом, закрытый невесомым легкоподвижным поршнем с площадью поперечного сечения $S=200~{\rm cm}^2$, находится в воздухе, давление которого $p_0=100~{\rm k}$ Па. Когда газу медленно сообщили некоторое количество теплоты, его внутренняя энергия увеличилась на $\Delta U=600~{\rm Дж}$, а поршень сместился на расстояние l, равное ... мм.
- **18.** На катод вакуумного фотоэлемента, изготовленного из серебра $(A_{\text{вых}} = 4, 3 \text{ эB})$, падает монохроматическое излучение. Если фототок прекращается при задерживающем напряжении $U_3 = 9, 7 \text{ B}$, то энергия E фотонов падающего излучения равна ... эВ.
- **19.** В электрической цепи, схема которой приведена на рисунке, сопротивления всех резисторов одинаковы и равны R, а внутреннее сопротивление источника тока пренебрежимо мало. Если после замыкания ключа K идеальный амперметр показывал силу тока I_2 = 42 мA, то до замыкания ключа K амперметр показывал силу тока I_1 , равную ... **мA**.

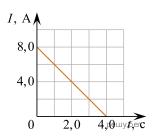


20. В однородном магнитном поле, модуль индукции которого B=0,10 Тл, на двух одинаковых невесомых пружинах жёсткостью k=50 Н/м подвешен в горизонтальном положении прямой однородный проводник длиной L=1,5 м (см. рис.). Линии магнитной индукции горизонтальны и перпендикулярны проводнику. Если при отсутствии тока в проводнике длина каждой пружины была $x_1=30$ см, то после того, как по проводнику пошёл ток I=20 А, длина каждой пружины x_2 в равновесном положении стала равной ... **см**.


21. Короткий световой импульс, испущенный лазерным дальномером, отразился от объекта и был зарегистрирован этим же дальномером через промежуток времени $\Delta t = 0.880$ мкс после испускания. Расстояние s от дальномера до объекта равно ... **м**.

22. В электрической цепи, схема которой приведена на рисунке 1, ЭДС источника тока $\varepsilon = 10~\mathrm{B}$, а его внутреннее сопротивление пренебрежимо мало. Сопротивление резистора R зависит от температуры T. Бесконечно большим оно оно становится при $T \geqslant 420~\mathrm{K}$ (см. рис. 2).

Удельная теплоемкость материала, из которого изготовлен резистор, $c=1000~\frac{\text{Дж}}{\text{K}\Gamma \cdot \text{K}}$, масса резистора $m=5,0~\Gamma$. Если теплообмен резистора с окружающей средой отсутствует, а начальная температура резистора $T_0=310~\text{K}$, то после замыкания ключа K через резистор протечет заряд q, равный ... Кл.


23. Стрелка AB высотой H=3.0 см и её изображение A_1B_1 высотой h=2.0 см,формируемое тонкой линзой, перпендикулярны главной оптической оси N_1N_2 линзы (см. рис.). Если расстояние между стрелкой и её изображением $AA_1=7.0$ см, то модуль фокусного расстояния |F| линзы равен ... см.

24. Парень, находящийся в середине движущейся вниз кабины панорамного лифта торгового центра, встретился взглядом с девушкой, неподвижно стоящей на расстоянии D=12 м от вертикали, проходящей через центр кабины (см. рис.). Затем из-за непрозрачного противовеса лифта длиной l=3,1 м, движущегося на расстоянии d=2,6 м от вертикали, проходящей через центр кабины, парень не видел глаза девушки в течение промежутка времени $\Delta t=2,0$ с. Если кабина и противовес движутся в противоположных направлениях с одинаковыми по модулю скоростями, то чему равен модуль скорости кабины? Ответ приведите в сантиметрах в секунду.

- **25.** Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 А, C=-0,50 $\frac{\mathrm{A}}{\mathrm{c}}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.
- **26.** Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal E=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.
- **27.** Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту $\alpha=30^\circ$ с постоянной скоростью $\vec{\upsilon}$. Сила сопротивления движению электроскутера прямо пропорциональна его скорости: $\vec{F_c}=-\beta\vec{\upsilon}$, где $\beta=1,25$ $\frac{\text{H}\cdot\text{c}}{\text{M}}$. Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя $\eta=85\%$, то модуль скорости υ движения электроскутера равен ... $\frac{\text{M}}{c}$.
- **28.** На рисунке представлен график зависимости силы тока I в катушке индуктивностью L=7.0 Гн от времени t. ЭДС $\mathcal{E}_{\mathbf{c}}$ самоиндукции, возникающая в этой катушке, равна ... В.

29. Идеальный колебательный контур состоит из конденсатора электроёмкостью C=150 мкФ и катушки индуктивностью L=1,03 Гн. В начальный момент времени ключ K разомкнут, а конденсатор заряжен (см. рис.). После замыкания ключа заряд конденсатора уменьшится в два раза через минимальный промежуток времени Δt , равный ... мс.

30. Луч света, падающий на тонкую рассеивающую линзу с фокусным расстоянием |F|=30 см, пересекает главную оптическую ось линзы под углом α , а продолжение преломлённого луча пересекает эту ось под углом β . Если отношение $\frac{\operatorname{tg}\beta}{\operatorname{tg}\alpha}=\frac{5}{2}$, то точка пересечения продолжения преломлённого луча с главной оптической осью находится на расстоянии f от оптического центра линзы, равном ... см.